Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.578
Filtrar
1.
Front Public Health ; 12: 1336077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389947

RESUMO

Background: The use of nonpharmaceutical interventions (NPIs) during severe acute respiratory syndrome 2019 (COVID-19) outbreaks may influence the spread of influenza viruses. This study aimed to evaluate the impact of NPIs against SARS-CoV-2 on the epidemiological features of the influenza season in China. Methods: We conducted a retrospective observational study analyzing influenza monitoring data obtained from the China National Influenza Center between 2011 and 2023. We compared the changes in influenza-positive patients in the pre-COVID-19 epidemic, during the COVID-19 epidemic, and post-COVID-19 epidemic phases to evaluate the effect of NPIs on influenza virus transmission. Results: NPIs targeting COVID-19 significantly suppressed influenza activity in China from 2019 to 2022. In the seventh week after the implementation of the NPIs, the number of influenza-positive patients decreased by 97.46% in southern regions of China and 90.31% in northern regions of China. However, the lifting of these policies in December 2022 led to an unprecedented surge in influenza-positive cases in autumn and winter from 2022 to 2023. The percentage of positive influenza cases increased by 206.41% (p < 0.001), with high positivity rates reported in both the northern and southern regions of China. Conclusion: Our findings suggest that NPIs against SARS-CoV-2 are effective at controlling influenza epidemics but may compromise individuals' immunity to the virus.


Assuntos
COVID-19 , Influenza Humana , Orthomyxoviridae , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , COVID-19/transmissão , Surtos de Doenças , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , SARS-CoV-2 , China , Estudos Retrospectivos , Controle de Doenças Transmissíveis/métodos
3.
Infect Dis Poverty ; 13(1): 4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200542

RESUMO

BACKGROUND: Previous studies provided some evidence of meteorological factors influence seasonal influenza transmission patterns varying across regions and latitudes. However, research on seasonal influenza activities based on climate zones are still in lack. This study aims to utilize the ecological-based Köppen Geiger climate zones classification system to compare the spatial and temporal epidemiological characteristics of seasonal influenza in Chinese Mainland and assess the feasibility of developing an early warning system. METHODS: Weekly influenza cases number from 2014 to 2019 at the county and city level were sourced from China National Notifiable Infectious Disease Report Information System. Epidemic temporal indices, time series seasonality decomposition, spatial modelling theories including Moran's I and local indicators of spatial association were applied to identify the spatial and temporal patterns of influenza transmission. RESULTS: All climate zones had peaks in Winter-Spring season. Arid, desert, cold (BWk) showed up the first peak. Only Tropical, savannah (Aw) and Temperate, dry winter with hot summer (Cwa) zones had unique summer peak. Temperate, no dry season and hot summer (Cfa) zone had highest average incidence rate (IR) at 1.047/100,000. The Global Moran's I showed that average IR had significant clustered trend (z = 53.69, P < 0.001), with local Moran's I identified high-high cluster in Cfa and Cwa. IR differed among three age groups between climate zones (0-14 years old: F = 26.80, P < 0.001; 15-64 years old: F = 25.04, P < 0.001; Above 65 years old: F = 5.27, P < 0.001). Age group 0-14 years had highest average IR in Cwa and Cfa (IR = 6.23 and 6.21) with unique dual peaks in winter and spring season showed by seasonality decomposition. CONCLUSIONS: Seasonal influenza exhibited distinct spatial and temporal patterns in different climate zones. Seasonal influenza primarily emerged in BWk, subsequently in Cfa and Cwa. Cfa, Cwa and BSk pose high risk for seasonal influenza epidemics. The research finds will provide scientific evidence for developing seasonal influenza early warning system based on climate zones.


Assuntos
Clima , Influenza Humana , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Pessoa de Meia-Idade , Adulto Jovem , China/epidemiologia , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Estações do Ano
4.
mBio ; 15(1): e0295723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112470

RESUMO

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Animais , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/metabolismo , Aerossóis e Gotículas Respiratórios/virologia , Influenza Humana/transmissão , Humanos , Modelos Animais de Doenças , Substituição de Aminoácidos
6.
Nature ; 619(7969): 338-347, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380775

RESUMO

Spillover events of avian influenza A viruses (IAVs) to humans could represent the first step in a future pandemic1. Several factors that limit the transmission and replication of avian IAVs in mammals have been identified. There are several gaps in our understanding to predict which virus lineages are more likely to cross the species barrier and cause disease in humans1. Here, we identified human BTN3A3 (butyrophilin subfamily 3 member A3)2 as a potent inhibitor of avian IAVs but not human IAVs. We determined that BTN3A3 is expressed in human airways and its antiviral activity evolved in primates. We show that BTN3A3 restriction acts primarily at the early stages of the virus life cycle by inhibiting avian IAV RNA replication. We identified residue 313 in the viral nucleoprotein (NP) as the genetic determinant of BTN3A3 sensitivity (313F or, rarely, 313L in avian viruses) or evasion (313Y or 313V in human viruses). However, avian IAV serotypes, such as H7 and H9, that spilled over into humans also evade BTN3A3 restriction. In these cases, BTN3A3 evasion is due to substitutions (N, H or Q) in NP residue 52 that is adjacent to residue 313 in the NP structure3. Thus, sensitivity or resistance to BTN3A3 is another factor to consider in the risk assessment of the zoonotic potential of avian influenza viruses.


Assuntos
Aves , Interações entre Hospedeiro e Microrganismos , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Zoonoses Virais , Animais , Humanos , Aves/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Primatas , Sistema Respiratório/metabolismo , Sistema Respiratório/virologia , Medição de Risco , Zoonoses Virais/prevenção & controle , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Replicação Viral
7.
Goiânia; SES-GO; 17 abr. 2023. 1-5 p. quad.
Não convencional em Português | LILACS, CONASS, Coleciona SUS, SES-GO | ID: biblio-1436290

RESUMO

A vigilância d influenza no Brasil é composta pela vigilância sentinela de Síndrome Gripal (SG), Síndrome Respiratória Grave (SRAG) em pacientes hospitalizados ou óbitos e em surtos de SG em instituições e de longa permanência. As unidade sentinelas de Síndrome Gripal têm como objetivo monitorar a circulação dos vírus respiratórios com ênfase em influenza e Sars-CoV-2, identificar as variações sazonais por faixa etária, prover cepas virais para formulação de vacinas de influenza, vigilância genômica do coronavírus, e identificar situações inusitadas


Influenza surveillance in Brazil is composed of sentinel surveillance of Influenza Syndrome (SG), Severe Respiratory Syndrome (SARS) in hospitalized or deceased patients and in SG outbreaks in institutions and long-term care facilities. The flu syndrome sentinel units aim to monitor the circulation of respiratory viruses with emphasis on influenza and Sars-CoV-2, identify seasonal variations by age group, provide viral strains for the formulation of influenza vaccines, genomic surveillance of the coronavirus, and identify unusual situations


Assuntos
Humanos , Recém-Nascido , Lactente , Criança , Influenza Humana/diagnóstico , Influenza Humana/complicações , Influenza Humana/prevenção & controle , Influenza Humana/tratamento farmacológico , Influenza Humana/transmissão
9.
JAMA ; 329(6): 482-489, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36701144

RESUMO

Importance: Influenza virus infections declined globally during the COVID-19 pandemic. Loss of natural immunity from lower rates of influenza infection and documented antigenic changes in circulating viruses may have resulted in increased susceptibility to influenza virus infection during the 2021-2022 influenza season. Objective: To compare the risk of influenza virus infection among household contacts of patients with influenza during the 2021-2022 influenza season with risk of influenza virus infection among household contacts during influenza seasons before the COVID-19 pandemic in the US. Design, Setting, and Participants: This prospective study of influenza transmission enrolled households in 2 states before the COVID-19 pandemic (2017-2020) and in 4 US states during the 2021-2022 influenza season. Primary cases were individuals with the earliest laboratory-confirmed influenza A(H3N2) virus infection in a household. Household contacts were people living with the primary cases who self-collected nasal swabs daily for influenza molecular testing and completed symptom diaries daily for 5 to 10 days after enrollment. Exposures: Household contacts living with a primary case. Main Outcomes and Measures: Relative risk of laboratory-confirmed influenza A(H3N2) virus infection in household contacts during the 2021-2022 season compared with prepandemic seasons. Risk estimates were adjusted for age, vaccination status, frequency of interaction with the primary case, and household density. Subgroup analyses by age, vaccination status, and frequency of interaction with the primary case were also conducted. Results: During the prepandemic seasons, 152 primary cases (median age, 13 years; 3.9% Black; 52.0% female) and 353 household contacts (median age, 33 years; 2.8% Black; 54.1% female) were included and during the 2021-2022 influenza season, 84 primary cases (median age, 10 years; 13.1% Black; 52.4% female) and 186 household contacts (median age, 28.5 years; 14.0% Black; 63.4% female) were included in the analysis. During the prepandemic influenza seasons, 20.1% (71/353) of household contacts were infected with influenza A(H3N2) viruses compared with 50.0% (93/186) of household contacts in 2021-2022. The adjusted relative risk of A(H3N2) virus infection in 2021-2022 was 2.31 (95% CI, 1.86-2.86) compared with prepandemic seasons. Conclusions and Relevance: Among cohorts in 5 US states, there was a significantly increased risk of household transmission of influenza A(H3N2) in 2021-2022 compared with prepandemic seasons. Additional research is needed to understand reasons for this association.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Influenza Humana , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , COVID-19/epidemiologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/uso terapêutico , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Estudos Prospectivos , Estações do Ano , Características da Família , Estados Unidos/epidemiologia , Busca de Comunicante/estatística & dados numéricos , Autoteste
10.
Biometrics ; 79(2): 1409-1419, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34825368

RESUMO

Studies of social networks provide unique opportunities to assess the causal effects of interventions that may impact more of the population than just those intervened on directly. Such effects are sometimes called peer or spillover effects, and may exist in the presence of interference, that is, when one individual's treatment affects another individual's outcome. Randomization-based inference (RI) methods provide a theoretical basis for causal inference in randomized studies, even in the presence of interference. In this article, we consider RI of the intervention effect in the eX-FLU trial, a randomized study designed to assess the effect of a social distancing intervention on influenza-like-illness transmission in a connected network of college students. The approach considered enables inference about the effect of the social distancing intervention on the per-contact probability of influenza-like-illness transmission in the observed network. The methods allow for interference between connected individuals and for heterogeneous treatment effects. The proposed methods are evaluated empirically via simulation studies, and then applied to data from the eX-FLU trial.


Assuntos
Influenza Humana , Distanciamento Físico , Ensaios Clínicos Controlados Aleatórios como Assunto , Rede Social , Causalidade , Ensaios Clínicos Controlados Aleatórios como Assunto/estatística & dados numéricos , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Humanos
11.
BMC Infect Dis ; 22(1): 820, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344911

RESUMO

BACKGROUND: Influenza is responsible for more than 5 million severe cases and 290,000 to 650,000 deaths every year worldwide. Developing countries account for 99% of influenza deaths in children under 5 years of age. This paper aimed to determine the dynamics of influenza viruses in African transmission areas to identify regional seasonality for appropriate decision-making and the development of regional preparedness and response strategies. METHODS: We used data from the WHO FluMart website collected by National Influenza Centers for seven transmission periods (2013-2019). We calculated weekly proportions of positive influenza cases and determined transmission trends in African countries to determine the seasonality. RESULTS: From 2013 to 2019, influenza A(H1N1)pdm2009, A(H3N2), and A(H5N1) viruses, as well as influenza B Victoria and Yamagata lineages, circulated in African regions. Influenza A(H1N1)pdm2009 and A(H3N2) highly circulated in northern and southern Africa regions. Influenza activity followed annual and regional variations. In the tropical zone, from eastern to western via the middle regions, influenza activities were marked by the predominance of influenza A subtypes despite the circulation of B lineages. One season was identified for both the southern and northern regions of Africa. In the eastern zone, four influenza seasons were differentiated, and three were differentiated in the western zone. CONCLUSION: Circulation dynamics determined five intense influenza activity zones in Africa. In the tropics, influenza virus circulation waves move from the east to the west, while alternative seasons have been identified in northern and southern temperate zones. Health authorities from countries with the same transmission zone, even in the absence of local data based on an established surveillance system, should implement concerted preparedness and control activities, such as vaccination.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza B , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/virologia , Estações do Ano , África/epidemiologia
12.
J Virol ; 96(22): e0148022, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36317880

RESUMO

Influenza A viruses (FLUAV) cause respiratory diseases in many host species, including humans and pigs. The spillover of FLUAV between swine and humans has been a concern for both public health and the swine industry. With the emergence of the triple reassortant internal gene (TRIG) constellation, establishment of human-origin FLUAVs in pigs has become more common, leading to increased viral diversity. However, little is known about the adaptation processes that are needed for a human-origin FLUAV to transmit and become established in pigs. We generated a reassortant FLUAV (VIC11pTRIG) containing surface gene segments from a human FLUAV strain and internal gene segments from the 2009 pandemic and TRIG FLUAV lineages and demonstrated that it can replicate and transmit in pigs. Sequencing and variant analysis identified three mutants that emerged during replication in pigs, which were mapped near the receptor binding site of the hemagglutinin (HA). The variants replicated more efficiently in differentiated swine tracheal cells compared to the virus containing the wildtype human-origin HA, and one of them was present in all contact pigs. These results show that variants are selected quickly after replication of human-origin HA in pigs, leading to improved fitness in the swine host, likely contributing to transmission. IMPORTANCE Influenza A viruses cause respiratory disease in several species, including humans and pigs. The bidirectional transmission of FLUAV between humans and pigs plays a significant role in the generation of novel viral strains, greatly impacting viral epidemiology. However, little is known about the evolutionary processes that allow human FLUAV to become established in pigs. In this study, we generated reassortant viruses containing human seasonal HA and neuraminidase (NA) on different constellations of internal genes and tested their ability to replicate and transmit in pigs. We demonstrated that a virus containing a common internal gene constellation currently found in U.S. swine was able to transmit efficiently via the respiratory route. We identified a specific amino acid substitution that was fixed in the respiratory contact pigs that was associated with improved replication in primary swine tracheal epithelial cells, suggesting it was crucial for the transmissibility of the human virus in pigs.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A/genética , Influenza Humana/transmissão , Mutação , Infecções por Orthomyxoviridae/transmissão , Vírus Reordenados/genética , Suínos , Doenças dos Suínos/virologia
14.
Proc Natl Acad Sci U S A ; 119(37): e2203019119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36074818

RESUMO

The global spread of coronavirus disease 2019 (COVID-19) has emphasized the need for evidence-based strategies for the safe operation of schools during pandemics that balance infection risk with the society's responsibility of allowing children to attend school. Due to limited empirical data, existing analyses assessing school-based interventions in pandemic situations often impose strong assumptions, for example, on the relationship between class size and transmission risk, which could bias the estimated effect of interventions, such as split classes and staggered attendance. To fill this gap in school outbreak studies, we parameterized an individual-based model that accounts for heterogeneous contact rates within and between classes and grades to a multischool outbreak data of influenza. We then simulated school outbreaks of respiratory infectious diseases of ongoing threat (i.e., COVID-19) and potential threat (i.e., pandemic influenza) under a variety of interventions (changing class structures, symptom screening, regular testing, cohorting, and responsive class closures). Our results suggest that interventions changing class structures (e.g., reduced class sizes) may not be effective in reducing the risk of major school outbreaks upon introduction of a case and that other precautionary measures (e.g., screening and isolation) need to be employed. Class-level closures in response to detection of a case were also suggested to be effective in reducing the size of an outbreak.


Assuntos
Surtos de Doenças , Pandemias , Infecções Respiratórias , Instituições Acadêmicas , COVID-19/prevenção & controle , COVID-19/transmissão , Criança , Simulação por Computador , Surtos de Doenças/prevenção & controle , Humanos , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Pandemias/prevenção & controle , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/transmissão
15.
J Virol ; 96(15): e0091822, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867563

RESUMO

Oseltamivir-resistant influenza viruses arise due to amino acid mutations in key residues of the viral neuraminidase (NA). These changes often come at a fitness cost; however, it is known that permissive mutations in the viral NA can overcome this cost. This result was observed in former seasonal A(H1N1) viruses in 2007 which expressed the H275Y substitution (N1 numbering) with no apparent fitness cost and lead to widespread oseltamivir resistance. Therefore, this study aims to predict permissive mutations that may similarly enable fit H275Y variants to arise in currently circulating A(H1N1)pdm09 viruses. The first approach in this study utilized in silico analyses to predict potentially permissive mutations. The second approach involved the generation of a virus library which encompassed all possible NA mutations while keeping H275Y fixed. Fit variants were then selected by serially passaging the virus library either through ferrets by transmission or passaging once in vitro. The fitness impact of selected substitutions was further evaluated experimentally. The computational approach predicted three candidate permissive NA mutations which, in combination with each other, restored the replicative fitness of an H275Y variant. The second approach identified a stringent bottleneck during transmission between ferrets; however, three further substitutions were identified which may improve transmissibility. A comparison of fit H275Y variants in vitro and in experimentally infected animals showed a statistically significant correlation in the variants that were positively selected. Overall, this study provides valuable tools and insights into potential permissive mutations that may facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant. IMPORTANCE Oseltamivir (Tamiflu) is the most widely used antiviral for the treatment of influenza infections. Therefore, resistance to oseltamivir is a public health concern. This study is important as it explores the different evolutionary pathways available to current circulating influenza viruses that may lead to widespread oseltamivir resistance. Specifically, this study develops valuable experimental and computational tools to evaluate the fitness landscape of circulating A(H1N1)pmd09 influenza viruses bearing the H275Y mutation. The H275Y substitution is most commonly reported to confer oseltamivir resistance but also leads to loss of virus replication and transmission fitness, which limits its spread. However, it is known from previous influenza seasons that influenza viruses can evolve to overcome this loss of fitness. Therefore, this study aims to prospectively predict how contemporary A(H1N1)pmd09 influenza viruses may evolve to overcome the fitness cost of bearing the H275Y NA substitution, which could result in widespread oseltamivir resistance.


Assuntos
Substituição de Aminoácidos , Farmacorresistência Viral , Aptidão Genética , Vírus da Influenza A Subtipo H1N1 , Mutação , Neuraminidase , Proteínas Virais , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Simulação por Computador , Modelos Animais de Doenças , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Furões/virologia , Aptidão Genética/genética , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Influenza Humana/tratamento farmacológico , Influenza Humana/transmissão , Influenza Humana/virologia , Neuraminidase/genética , Neuraminidase/metabolismo , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Proteínas Virais/genética , Proteínas Virais/metabolismo
16.
J Virol ; 96(2): e0137421, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757846

RESUMO

Human-to-swine transmission of influenza A virus (IAV) repeatedly occurs, leading to sustained transmission and increased diversity in swine; human seasonal H3N2 introductions occurred in the 1990s and 2010s and were maintained in North American swine. Swine H3N2 strains were subsequently associated with zoonotic infections, highlighting the need to understand the risk of endemic swine IAV to humans. We quantified antigenic distances between swine H3N2 and human seasonal vaccine strains from 1973 to 2014 using a panel of monovalent antisera raised in pigs in hemagglutination inhibition (HI) assays. Swine H3N2 lineages retained the closest antigenic similarity to human vaccine strains from the decade of incursion. Swine lineages from the 1990s were antigenically more similar to human vaccine strains of the mid-1990s but had substantial distance from recent human vaccine strains. In contrast, lineages from the 2010s were closer to human vaccine strains from 2011 and 2014 and the most antigenically distant from human vaccine strains prior to 2007. HI assays using ferret antisera demonstrated that swine lineages from the 1990s and 2010s had significant fold reductions compared to the homologous HI titer of the nearest pandemic preparedness candidate vaccine virus (CVV) or seasonal vaccine strain. The assessment of postinfection and postvaccination human serum cohorts demonstrated limited cross-reactivity to swine H3N2 from the 1990s, especially in older adults born before the 1970s. We identified swine strains to which humans are likely to lack population immunity or are not protected against by a current human seasonal vaccine or CVV to use in prioritizing future human CVV strain selection. IMPORTANCE Human H3N2 influenza A viruses spread to pigs in North America in the 1990s and more recently in the 2010s. These cross-species events led to sustained circulation and increased H3N2 diversity in pig populations. The evolution of H3N2 in swine led to a reduced similarity to human seasonal H3N2 and the vaccine strains used to protect human populations. We quantified the antigenic phenotypes and found that North American swine H3N2 lineages retained more antigenic similarity to historical human vaccine strains from the decade of incursion but had substantial differences compared to recent human vaccine strains. Additionally, pandemic preparedness vaccine strains demonstrated a loss of similarity to contemporary swine strains. Finally, human sera revealed that although these adults had antibodies against human H3N2 strains, many had limited immunity to swine H3N2, especially older adults born before 1970. Antigenic assessment of swine H3N2 provides critical information for pandemic preparedness and candidate vaccine development.


Assuntos
Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/virologia , Zoonoses Virais/virologia , Animais , Deriva e Deslocamento Antigênicos , Variação Antigênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Soros Imunes/imunologia , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/genética , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções por Orthomyxoviridae/transmissão , Filogenia , Medição de Risco , Suínos , Zoonoses Virais/transmissão
17.
CPT Pharmacometrics Syst Pharmacol ; 11(1): 44-54, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34676676

RESUMO

The identification of influenza epidemics and assessment of the efficacy of vaccination against this infection are major challenges for the implementation of effective public health strategies, such as vaccination programs. In this study, we developed a new pharmacometric model to evaluate the efficacy of vaccination based on infection surveillance data from the 2010/2011 to 2018/2019 influenza seasons in Japan. A novel susceptible-infected-removed plus vaccination model, based on an indirect response structure with the effect of vaccination, was applied to describe seasonal influenza epidemics using a preseasonal collection of data regarding serological H1 antibody titer positivity and the fraction of virus strains. Using this model, we evaluated Kin (a parameter describing the transmission rate of symptomatic influenza infection) for different age groups. Furthermore, we defined a new parameter (prevention factor) showing the efficacy of vaccination against each viral strain and in different age groups. We found that the prevention factor of vaccination against influenza varied among age groups. Notably, children aged 5-14 years showed the highest Kin value during the 10 influenza seasons and the greatest preventive effect of vaccination (prevention factor = 70.8%). The propagation of influenza epidemics varies in different age groups. Children aged 5-14 years most likely play a leading role in the transmission of influenza. Prioritized vaccination in this age group may be the most effective strategy for reducing the prevalence of influenza in the community.


Assuntos
Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Número Básico de Reprodução , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Estações do Ano , Vigilância de Evento Sentinela , Adulto Jovem
18.
PLoS Pathog ; 17(12): e1010106, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34969061

RESUMO

The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.


Assuntos
COVID-19/virologia , Influenza Humana/virologia , Orthomyxoviridae/fisiologia , SARS-CoV-2/fisiologia , Animais , Antivirais , COVID-19/terapia , COVID-19/transmissão , Desenvolvimento de Medicamentos , Evolução Molecular , Humanos , Influenza Humana/terapia , Influenza Humana/transmissão , Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia , Seleção Genética , Carga Viral , Vacinas Virais
20.
Ann Intern Med ; 174(12): 1710-1718, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748374

RESUMO

Policies to prevent respiratory virus transmission in health care settings have traditionally divided organisms into Droplet versus Airborne categories. Droplet organisms (for example, influenza) are said to be transmitted via large respiratory secretions that rapidly fall to the ground within 1 to 2 meters and are adequately blocked by surgical masks. Airborne pathogens (for example, measles), by contrast, are transmitted by aerosols that are small enough and light enough to carry beyond 2 meters and to penetrate the gaps between masks and faces; health care workers are advised to wear N95 respirators and to place these patients in negative-pressure rooms. Respirators and negative-pressure rooms are also recommended when caring for patients with influenza or SARS-CoV-2 who are undergoing "aerosol-generating procedures," such as intubation. An increasing body of evidence, however, questions this framework. People routinely emit respiratory particles in a range of sizes, but most are aerosols, and most procedures do not generate meaningfully more aerosols than ordinary breathing, and far fewer than coughing, exercise, or labored breathing. Most transmission nonetheless occurs at close range because virus-laden aerosols are most concentrated at the source; they then diffuse and dilute with distance, making long-distance transmission rare in well-ventilated spaces. The primary risk factors for nosocomial transmission are community incidence rates, viral load, symptoms, proximity, duration of exposure, and poor ventilation. Failure to appreciate these factors may lead to underappreciation of some risks (for example, overestimation of the protection provided by medical masks, insufficient attention to ventilation) or misallocation of limited resources (for example, reserving N95 respirators and negative-pressure rooms only for aerosol-generating procedures or requiring negative-pressure rooms for all patients with SARS-CoV-2 infection regardless of stage of illness). Enhanced understanding of the factors governing respiratory pathogen transmission may inform the development of more effective policies to prevent nosocomial transmission of respiratory pathogens.


Assuntos
Controle de Infecções/métodos , Infecções Respiratórias/transmissão , Infecções Respiratórias/virologia , Aerossóis , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/virologia , Política de Saúde , Humanos , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Influenza Humana/virologia , Máscaras , Recursos Humanos em Hospital , SARS-CoV-2 , Estados Unidos/epidemiologia , Ventilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...